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Abstract—Optimism, which encourages exploration by favoring
uncertain but potentially rewarding actions, has demonstrated
improvements in sample efficiency for single-agent reinforcement
learning (RL). We propose a fully decentralized framework for
sample-efficient model-based multi-agent reinforcement learning
(MARL). Our Optimistic Gossiping Multi-Agent Reinforcement
Learning algorithm, OG-MARL, can efficiently balance learning
the environment by exploring and achieving high cooperative
performances in exploitation. OG-MARL learns a Bayesian
uncertainty-aware world model for each agent, approximating
the unknown environment dynamics and quantifying epistemic
uncertainty. Nearby agents exchange model updates and converge
over time to a consensus of the global model. During the
learning process, the agents construct upper confidence bounds
on their learned world models in a decentralized manner and act
optimistically, thereby achieving a bound on their simple regret.
We evaluate the efficacy of our OG-MARL implementation1 on
a cooperative reward collection task with action penalties.

Index Terms—Distributed Systems, Multi-Agent RL, Optimism

I. INTRODUCTION

For tasks and applications with multiple interacting agents,
multi-agent reinforcement learning (MARL) has shown
promising results [3, 13, 14, 21]. Most of this notable progress
relies on the use of good simulators because, in many cases,
RL methods require large amounts of data for learning. For
online learning tasks in real-life applications, the RL algo-
rithms have to learn efficiently, balancing exploration of the
environment and exploitation of the learned reward and transi-
tion structure, to achieve good performance in as few episodes
as possible. For single-agent reinforcement learning, various
model-based techniques using optimism lead to theoretical
and empirical faster learning behavior, reaching near-optimal
policies [4, 5, 18, 20]. These algorithms learn an uncertainty-
aware, well-calibrated world model to exploit certain parts of
the environment and efficiently explore uncertain regions. In
contrast, there has been little progress for MARL, and the
existing related work [17] uses a centralized world model,
which is a rather limiting choice for a distributed MARL set-
ting. Other related work on optimistic MARL that uses upper
confidence bounds in a distributed setting [11, 12, 15, 22, 23]
considers discrete state and action spaces following the multi-
armed bandit problem formulation. Since most real-world
applications have continuous state representations, we focus

1GitHub: https://github.com/ManuelWendl/OG-MARL

on general Markov games in continuous state action spaces.
As the main contribution of this work, we:

• Introduce OG-MARL, a decentralized model-based
multi-agent reinforcement learning algorithm using opti-
mism for optimal exploration and exploitation trade-off.

• Prove convergence of the distributed world model via
gossiping on a communication graph.

• Derive a simple regret bound for cooperative tasks for
provable convergence.

• Demonstrate the capabilities of OG-MARL on a cooper-
ative reward collection task.

II. PROBLEM STATEMENT

A. Multi-Agent Markov Game (MG)

Let us consider a multi-agent reinforcement learning problem
formulated as an MG with N individual agents acting for an
infinite horizon. At each timestep t agent i selects an action
ait ∈ Ai ⊆ RdAi observing the environment state st ∈ S ⊆
RdS . Each agent i plays the actions ait according to the policy
πi : S → Ai and obtains its individual reward according to ri :
S×

∏N
i=1 Ai → R+. The environment evolves according to the

unknown dynamics f and additive i.i.d. zero-mean Gaussian
noise ωt with variance σ:

st+1 = f(st, a
1
t , . . . , a

N
t ) + ωt. (1)

In this work, we have the following regularity assumptions on
the reward and the true system dynamics:
Assumption 1 (Lipschitz Dynamics and Reward). There exist
constants Lf , Lr > 0 such that for all s, s′ ∈ S, and all
a, a′ ∈ A1 × · · · × AN ,

∥f(s, a)− f(s′, a′)∥2 ≤ Lf (∥s− s′∥2 + ∥a− a′∥2),
∥ri(s, a)− ri(s′, a′)∥2 ≤ Lr(∥s− s′∥2 + ∥a− a′∥2).

Additionally, we have the following requirements on the state
and action spaces as well as the reward:
Assumption 2 (Bounded State and Action Spaces). The
state space S ⊆ RdS and each action space Ai ⊆ RdAi

are compact and bounded. All rewards ri(s, a1, . . . , aN ) are
uniformly bounded in [Rmin, Rmax], where Rmin, Rmax ∈ R.
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B. Cooperative Objective

We define the cooperative reward at time t by

r(st, a
1
t , . . . , a

N
t ) =

N∑
i=1

ri
(
st, a

1
t , . . . , a

N
t

)
. (2)

The cooperative return under the joint policy π is the accumu-
lated and discounted reward with discount factor γ ∈ (0, 1)

J(π) = Eπ

[ ∞∑
t=0

γtr(st, a
1
t , . . . , a

N
t )

]
. (3)

Since interacting with the real environment is costly, our goal
is to minimize the simple cooperative regret, defined over H
learning episodes as

R(H) =

H∑
h=1

(
max
π∈Π

J(π)− J
(
πh

))
, (4)

where Π =
∏N

i=1 Π
i is the joint policy space and πh ∈ Π

is the joint policy chosen in episode h. Sublinear growth of
R(H) implies that the agents collectively approach the optimal
cooperative policy.

C. Model-Based Planning with Consensus

In our distributed model-based learning scheme, each agent i
maintains a local world-model in the form of a sparse inducing
points-based Gaussian Process (GP) [16] via zero-padding, and
runs K rounds of gossiping on a communication graph to
agree on a common model of f with all other agents. Based
on this converged consensus model, the agents update their
policies πi

h in each episode h using optimistic model-based
policy optimization (MBPO)[9] to maximize the cooperative
return J(π). While the theory in this work builds on GPs, it
can also be extended to other classes of calibrated models. For
the well-calibrated GPs, we assume boundedness of f in the
reproducing Kernel Hilbert space.
Assumption 3 (Reproducing Kernel Hilbert Space (RKHS)).
The unknown dynamics f lie in an RKHS of a kernel k and
therefore have a bounded norm ||f ||k ≤ B with a known and
finite constant B.
Definition 1 (Calibrated Model). The uncertainty aware model
Fh′ := {f̃ | |f̃−µh′ | ≤ βh′σh′} with nominal model µh′ : S×∏N

i=1 Ai → RdS and uncertainty σh′ : S×
∏N

i=1 Ai → RdS is
well-calibrated over all episodes h′ ∈ {1, . . . , h} if there exist
βh′ , so that with probability of at least 1 − δ the confidence
intervals enclose the true dynamics ∀(s, a1, . . . , aN ) ∈ S ×∏N

i=1 Ai that f(s, a1, . . . , aN ) ∈ Fh :=
⋂h

h′=1 Fh.

For the distributed GP model, agents communicate with each
other and exchange knowledge about their models. The agents
are connected via a communication graph G = (V, E), with
vertices V being the agents and their connecting edges E .
The communication network is fully defined via the doubly
stochastic matrix W ∈ RN×N and has Wi,j ∈ (0, 1] if agents
i and j are connected and have a common edge (i, j) ∈ E .

Definition 2 (Doubly Stochastic Matrix). A matrix W ∈
RN×N is doubly stochastic if

1⊤W = 1⊤ ∧W1 = 1.

For learning the world-model fully decentralized, we have the
following additivity assumption on the global dynamics given
the individual states and actions of all agents:
Assumption 4 (Additive Dynamics). The global dynamics
decompose into the individual contributions as

f(s, a1, . . . , aN ) =

N∑
i=1

f i(s, ai)

given the agents i = 1, . . . , N with the individual actions ai.

III. OG-MARL: OPTIMISTIC GOSSIPING MARL
We now detail the OG-MARL method. First, we describe how
each agent builds a sparse GP model of the dynamics sec-
tion III-A, then how agents perform consensus section III-B,
and finally the overall algorithm flow section III-C.

A. Sparse GP with Shared Inducing Points

1) Global Feature Mapping: To learn a distributed world-
model, each agent needs to have the same representation of
the global state. Therefore, we first embed the state and joint-
action into a shared, D-dimensional feature space of the state
s ∈ S, observed by all agents and the individual actions
ai ∈ Ai, that are only visible to agent i:

φ : S ×A1 × · · · × AN −→ RD . (5)

To allow each agent to update its world-model only on its
action, agent i forms input xi by placing the global state s
and its own action ai in the appropriate slots, with zeros for
other agents’ actions; this ensures each agent’s input lies in
the full joint-action space

xi =
(
s, 0, . . . , ai, . . . , 0

)
∈ S ×A1 × · · · × AN , (6)

and defines its own local and zero-padded feature

φi(s, ai) = φ(xi) ∈ RD. (7)

All the agents have to agree on the same mapping φ and the
same embedding dimension D, to learn a distributed model.

Further, we require for sufficient expressivity of a learned
distributed world model that:
Assumption 5. Each agent’s zero-padded mapping φi(s, ai)
is sufficiently expressive to approximate its dynamics compo-
nent f i(s, ai) of the decomposed global dynamics f .

Typical choices for such mappings are random Fourier features
or radial basis function (RBF) embeddings.
2) Shared Inducing Points: The prior of the world model is
constructed from a set of M common joint-action inducing
points Z = { zj = (s(j), a(j))}Mj=1 ⊂ S × A1 × · · · × AN ,
that are shared by all agents and determined once, before the
optimization starts. Further, a suitable kernel is chosen to fulfill
assumption 3: k : RD × RD → R and we precompute once:

KZ,Z ∈ RM×M , [KZ,Z ]jk = k
(
φ(zj), φ(zk)

)
. (8)



3) Local Sparse-GP Posterior: In every episode h, each agent
i observes the transitions {(st, ait, st+1)}Ti

t=1, with the global
state st, the next state st+1 and its own action ait. Let us
define the state difference as ∆st = st+1 − st and determine
the local, zero-padded features φi

t = φi(st, a
i
t). Then the local

GP posterior over the inducing outputs f(Z) of each agent i
is parametrized by the mean and variance [16, eqs. 8.23,8.24]

mi
h ∈ RM dS , Si

h ∈ RM dS×M dS , (9)

mi
h = 1

σ2 S
i
h KZ,Xi Y i, (10)

Si
h =

(
KZ,Z + 1

σ2KZ,XiKXi,Z

)−1

, (11)

with the cross-covariance matrix KZ,Xi between the inducing
points Z and the agent data Xi, as well as the target Y i of
the state differences ∆st computed for all t = 1, . . . , Ti:

KZ,Xi =
[
k(φ(zj), φ

i(st, a
i
t))

]t=1,...,Ti

j=1,...,M
, (12)

Y i = [∆s1, . . . ,∆sTi
]⊤. (13)

The local one-step predictive mean and variance of agent i for
state s and action ai are hence computed by:

µi
h(s, a

i) = Kxi,Z (KZ,Z + σ2I)−1 mi
h, (14)

σi
h(s, a

i)2 = k
(
φi(s, ai), φi(s, ai)

)
(15)

−Kxi,Z (KZ,Z + σ2I)−1 KZ,xi , (16)

where KZ,xi = K⊤
xi,Z . However, this predictive distribution

with mean µi
h(s, ai) and variance σi

h(s, ai)
2 is not incorporat-

ing any knowledge of the other agents and does not correspond
to the predictive distribution one would obtain from a global
world model that has access to the actions ai of all the agents.

B. Sparse-GP Consensus

Since the local predictive distribution of each agent does
not know anything about the actions of neighboring agents,
the agents use multiple communication rounds to obtain an
arbitrarily close approximation of the global world-model
prediction. The agents communicate over a connected graph
G = (V, E) with the agents being represented as vertices V
and their communication connections as edges E . The com-
munication matrix of all edges has doubly-stochastic weights
W . At the end of each episode h, each agent computes its
local sparse-GP posterior of the inducing inputs with eqs. (10)
and (11) and initializes the communication round with

µ
i,(0)
h = µi

h, Σ
i,(0)
h = Σi

h. (17)

Then the agents communicate and update their initial believes
of their local sparse-GP posteriors based on the other agents
for k = 0, . . . ,K − 1 gossiping steps. We therefore define the
stacked block vectors η

(k)
h ∈ RNMdS ,Λ

(k)
h ∈ RNMdS×MdS

η
(k)
h =


µ
1,(k)
h
...

µ
N,(k)
h

 , Λ
(k)
h =


Σ

1,(k)
h
...

Σ
N,(k)
h

 , (18)

and perform the following gossiping step iteratively

η
(k+1)
h = (W ⊗ I)η

(k)
h , (19)

Λ
(k+1)
h = (W ⊗ I)Λ

(k)
h , (20)

in matrix notation using the Kronecker product ⊗. After K

iterations all agent agree on µ̄h = µ
i,(K)
h and Σ̄h = Σ

i,(K)
h .

C. OG-MARL Algorithm

We summarize OG-MARL in Algorithm 1. In each episode
h, the agents perform four main steps of (a) data collection in
(line 4): each agent executes its current policy and collects
local transitions. Next we perform the (b) local sparse-GP
update (line 5): agents fit their GP world models to the newly
collected data in eqs. (10) and (11). Further in (c) the commu-
nication is performed reaching Consensus (line 6): agents run
K rounds of gossip averaging on their GP parameters eqs. (19)
and (20). After achieving consensus we (d) update the current
policy optimistically (line 7): each agent uses the converged
consensus model given by the natural parameters

µh = µ0 +Nµ̄h, Σh = Σ0 +N Σ̄h, (21)

with the priors (µ0,Σ0) and the consensus parameters
(µ̄h, Σ̄h) after gossiping. This converged consensus model is
used to compute the predictive distribution (µcons

h , σcons
h ) with

eqs. (14) and (15) and the moment-form parameters

mh = Shµh, Sh = Σ−1
h . (22)

The policy is then optimistically updates using the model
prediction and model-based policy optimization.

Algorithm 1 OG-MARL: Optimistic Gossiping MARL
1: Initialize the world-models with joint inducing points Z.
2: Choose global mapping φ, kernel, k and compute prior

Gramm-matrix KZ,Z . Initialize policies πi
0.

3: for episode h = 1, . . . ,H do
4: (a) agents execute πi

h, and collect {(st, ait, st+1)}Ti
t=1.

5: (b) compute µi
h,Σ

i
h from data {(φi(st, a

i
t),∆st)}.

6: (c) run K gossip rounds on {µi
h,Σ

i
h} over G.

7: (d) compute µcons
h , σcons

h from µh,Σh and update πi
h.

8: end for

IV. CONVERGENCE OF DISTRIBUTED WORLD-MODEL

According to our problem definition, we have the following
assumption for the communication graph of the agents
Assumption 6. Let the communication graph G = (V, E)
be connected, aperiodic, and let the weight matrix W of the
communication graph be doubly-stochastic.
Lemma 1 (Consensus). Given assumption 6 is satisfied, the
gossiping round with a sufficiently large number of K updates

µ(k+1) = W µ(k), µ(0) =
[
µ1
h; . . . ; µ

N
h

]
converges to the consensus vector

µ̄h = µ
(K)
h = 1

N

N∑
i=1

µi
h. (23)



Proof. Given the block-vector notation of eq. (18) for the
gossiping step in eqs. (19) and (20) and that assumption 6
holds, [2, theorem 2.13], and perform communication for K
rounds until convergence, we obtain

η(K) = (W ⊗ IMds
)Kη(0) = (WK ⊗ IMds

)η(0), (24)

where the K-th power of W converges to [2, theorem 2.13]

WK = 1w⊤, (25)

where the left dominant eigenvector is w = 1
N 1 due to W

being doubly-stochastic [2, Corr. 13.2].

η(K) =
(

1
N 11⊤ ⊗ IMdS

)
η(0) =

µ̄h

...
µ̄h

 . (26)

Then η(K) is a fixed point of the communication update:

(W ⊗ I)η(K) = η(K). (27)

Let us define the error term E(k) = η(k) − η(K). And since
1⊤W = 1⊤ holds due to doubly-stochastic W ,

E(k+1) = η(k+1) − η(K) (28)

= (W ⊗ I)η(k) − (W ⊗ I)η(K) (29)
(27)
= (W ⊗ I)η(k) − η(K) (30)

= (W ⊗ I)E(k). (31)

The operator norm of the Kronecker product satisfies [2,
E.8.1] ∥W ⊗ I∥2 = ∥W∥2∥I∥2 = ∥W∥2 and from double-
stochasticity, we obtain [2, Lemma 2.9] ∥W∥2 = ρ(W ) = 1.
On the subspace {x : 1⊤x = 0}, we have |λ2(W )| ≤ 1, thus

∥E(k+1)∥2 ≤ λ2(W ) ∥E(k)∥2, (32)

so by Banach’s Fixed-Point Theorem in [1] the iterations
converge geometrically to the fixed point M (K):

∥η(k) − η(K)∥ ≤ λ2(W )k ∥η(0) − η(K)∥. (33)

Since each block of η(K) equals µK
h , every agent’s local µi,(K)

h

converges to the average µK
h = µ̄h.

The same argument as in lemma 1 applies to the block-vector
of covariances

[
Σ

1,(k)
h ; . . . ; Σ

N,(k)
h

]
. Hence after K rounds, we

get for the post-communication posterior estimates that

To obtain a meaningful predictive distribution parametrized by
mean and variance µcons

h and σcons
h , computed with eqs. (14)

and (15) from the converged consensus model defined in
eq. (21) we show that theorem 1 holds:
Theorem 1 (Global World-Model Consensus). Given assump-
tions 4 to 6 are satisfied and a sufficiently large number
K of communication rounds have taken place, each agent’s
sparse GP posterior estimates (mh, Sh) have converged to the
posterior of the global world model with access to the entire
pooled data

⋃N
i=1 x

i
h of all agents i = 1, . . . , N .

Proof. We prove theorem 1 by (i) writing both local and global
GP updates in their natural-parameter form, and (ii) exploiting
that consensus averages the distributed natural parameters.

a) Global Computation: Recall our sparse GP prior on the
inducing outputs u = f(Z) ∈ RMdS :

p(u) = N
(
u ; 0, KZ,Z

)
⇐⇒ (Σ0, µ0) (34)

with the natural parameters mean and covariance

µ0 = 0, Σ0 = K−1
Z,Z . (35)

Agent i observes local data Xi
h of size Ti, with features Φi

h =
[φi

t]
Ti
t=1 ∈ RTi×D and targets Yi ∈ RTi×dS . Under aleatoric

Gaussian noise N (0, σ2I), we obtain the log-likelihood

log p({∆st}|u) =
N∏
i=1

log p({∆st}|u; Φi
h), (36)

with local natural parameters

Σi
h = 1

σ2 Φ
i⊤
h Φi

h , µi = 1
σ2 Φ

i⊤
h Yi. (37)

Hence, the global posterior after pooling all data has conse-
quently under assumption 4 the natural parameters :

Σh = Σ0 +

N∑
i=1

Σi
h = K−1

Z,Z +
1

σ2

N∑
i=1

KZ,XiKXi,Z , (38)

µh = µ0 +

N∑
i=1

µi
h =

1

σ2

N∑
i=1

KZ,XiY i. (39)

b) Local Computation and Consensus: Each agent i can
compute its local parameters (Σi

h, µ
i
h) from its own data alone.

We stack these into a block-vector given by

Λ
i(0)
h =

Σ
i
h
...
Σi

h

 , η
i(0)
h =

µ
i
h
...
µi
h

 (40)

We then run K-step gossip (with W doubly-stochastic) in-
dependently on the Σ-blocks and µ-blocks. By lemma 1, the
gossiping updates

Λ
i(k+1)
h = (W ⊗ I)Λ

i(k)
h , η

i(k+1)
h = (W ⊗ I)η

i(k)
h (41)

converge to the block averages

Σ̄h =
1

N

N∑
i=1

Σi
h, µ̄h =

1

N

N∑
i=1

µi
h. (42)

c) Rescaling: Since Σ̄h and µ̄h are just averages, every agent
recovers the true global sum by multiplying by N :

Σh =Σ0 +

N∑
i=1

Σi
h = Σ0 +N Σ̄h (43)

µh =µ0 +

N∑
i=1

µi
h = µ0 +Nµ̄h. (44)

Agent i already knows the prior Σ0 and µ0, so it can form
(Σh, hh) exactly after gossiping converged to consensus.



d) Recovery of (mh, Sh): Finally, all agents compute

mh = Sh µh, Sh = Σ−1
h . (45)

By construction, these match the posterior mean and covari-
ance of the sparse GP on the pooled data. Hence the predictive
µ(s, a) and σ2(s, a) built from (mh, Sh) are the same as in the
centralized case if the communication rounds have converged.
e) Uniqueness and Contraction: The posterior parameter map
(Σh, µh) 7→ (Σ0 +

∑
Σi

h, µ0 +
∑

µi
h) is affine and has

a unique fixed point. The consensus averaging operator is
a Banach contraction on the error subspace with a spectral
radius < 1, so any initial X(0) converges to X̄ . Rescaling the
consensus parameters by N and adding the prior parameters
(Σ0, h0) preserves uniqueness. Thus, for a large enough num-
ber K of communications, all agents converge to consensus, so
that every agent recovers the global posterior parameters of the
distributed world-model and hence the predictive distribution,
despite only ever observing its own actions.

V. REGRET ANALYSIS

In this section, we derive a regret bound for the fully cooper-
ative setting, in which all agents jointly seek to maximize the
team return

J(π) = E
[ ∞∑
t=0

γtr(st, a
1
t , . . . , a

N
t )

]
, (46)

r(s, a1, . . . , aN ) =

N∑
i=1

ri(s, a1, . . . , aN ). (47)

with the optimistically chosen joint policy

πh = argmax
π∈Π

∑
i

UCBi
h(π), (48)

where we optimize for the upper confidence bound

UCBi
h(π) = max

η∈[−1,1]p
E

[ ∞∑
t=0

γtri(st, a
1
t , . . . , a

N
t )

]
(49)

s.t. at = π(st) (50)
st = µcons

h (st, at) + βhσ
cons
h (st, at)η(st, at) + ωt. (51)

In contrast to solving this with hallucinating control of the
uncertainty with η(st, at) as proposed in [6], we add an
intrinsic exploration bonus to the reward, that is dependent
on the scaled model uncertainty ∥σcons

h (st, at)∥, but plan on
the nominal dynamics following the mean µcons

h (st, at) of the
predictive distribution:

πi
h =arg max

πi∈Πi
E
[ ∞∑

t=0

γt(ri(st, a
1
t , . . . , a

N
t ) (52)

+ λh∥σcons
h (st, a

1
t , . . . a

N
t ))∥

]
(53)

s.t. at =π(st), st = µcons
h (st, at) + ωt. (54)

A. Confidence lemma

To show that the regret is bounded, we first need to establish
an upper bound on the value of each agent using the UCB.
Lemma 2 (Confidence). Given assumptions 1 to 3 hold and
the model is calibrated according to definition 1, then for every
joint policy π and episode h,

N∑
i=1

UCBi
h(π) ≥ J(π).

Proof. [17, Lemma 1].

Thus the aggregated UCB is an optimistic estimate of the true
cooperative performance. Further, we upper-bound the gap of
the upper confidence bound to the value and demonstrate that
the intrinsic reward is sufficient do so:
Lemma 3 (Optimism Gap Bound). Given assumptions 1 to 3
hold and the model is calibrated according to definition 1,
there exists a constant λh = Rmaxγ

1−γ
(1+

√
dx)βh

σ so that for any
joint policy π of the N agents,∣∣∣∑

i

UCBi
h(π)−J(π)

∣∣∣ ≤ NλhEπ

[ ∞∑
t=0

γt∥σcons
h (st, π(st))∥

]
.

Proof. Let {st}∞t=0 be the trajectory under the true dynamics f
and noise ω, and let {s̃t}H−1

h=0 be the “hallucinated” trajectory
under f̃ = µcons

h + βh σ
cons
h η⋆, with the same noise ω. Then

V i(π) = Eω

[ ∞∑
t=0

γtri(st, π(st))
]
, (55)

UCBi
h(π) = Eω

[ ∞∑
t=0

γtri(s̃t, π(s̃t))
]
. (56)

Under assumption 1, we bound∣∣UCBi
h(π)− V i(π)

∣∣ (57)

=

∞∑
t=0

γrE
[√

max{Eωt
[R(s̃t+1)],Eωt

[R(st+1)]} (58)

× γt
r min

{
∥st+1 − s̃t+1∥

σ
, 1

}]
. (59)

≤
∞∑
t=0

γrE
[√

max{Eωt [R(s̃t+1)],Eωt [R(st+1)]} (60)

× γt
r min

{
∥f(s̃t, π(s̃t))− µcons

h (s̃t, π(s̃t))∥
σ

, 1

}]
(61)

≤ Rmaxγr
1− γr

(1 +
√
ds)βh

σ

∞∑
t=0

E
[
γt
r∥σcons

h (s̃t, π(s̃t))∥
]

(62)

= λhE
[
γt
r∥σcons

h (s̃t, π(s̃t))∥
]

(63)

for (1+
√
ds)βh

σ R(s) = V π
r,f

2(s) and with R(s) ≤ λh, given
the simulation lemma [10, lemma 3.9] and the additive noise
standard deviation σ. We obtain the resulting lemma by
summing over all N agents.
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Fig. 1. Three connected, symmetric graphs on 5 nodes with nonzero self-weights (loops) and Metropolis weights: (left) cycle, (center) path, (right) star.

B. Regret Bound

The regret bound of OG-MARL depends on the maximum
information gain of the chosen kernel k [19], defined as

ΓH(k) = max
U⊂S×

∏
i Ai;|U|≤H

1

2
log |I + σ−2KH |. (64)

Theorem 2 (Cooperative Simple Regret). Assume we de-
termine the policy πh in each episode planning with
the intrinsic reward in eq. (52), solving for πh =
argmaxπ∈Π

∑
i UCBi

h(π). Then, under assumptions 1 to 3
and definition 1 it holds with high probability 1− δ,

R(H) =

H∑
h=1

(
max
π

J(π)− J(πh)
)
≤ O

(
NΓ

3/2
H log(H)

√
H
)
.

Proof. Fix any episode h. By lemma 2 and by the definition
of our optimistically chosen policy in eq. (52)

max
π

J(π) ≤ max
π

∑
i

UCBi
h(π) (65)

(52)
=

∑
i

UCBi
h(πh). (66)

Thus, the single-episode regret satisfies

max
π

J(π)− J(πh) ≤
∑
i

UCBi
h(πh)− J(πh). (67)

Applying lemma 3 and summing over h = 1, . . . ,H gives

R(H) ≤ Nλh

H∑
h=1

Eπh

[ ∞∑
t=0

γt∥σcons
h (st, πh(st))∥

]
. (68)

Due to the monotonicity of λh we upper bound λh ≤ λH and
use Cochy-Schwarz to obtain

≤ NλH

√
H

√√√√ H∑
h=1

Eπh

[ ∞∑
t=0

γt∥σcons
h (st, πh(st))∥2

]2
(69)

≤ NλH

√
H

1− γ

√√√√ H∑
h=1

Eπh

[ ∞∑
t=0

γt∥σcons
h (st, πh(st))∥2

]
(70)

Using the maximum information gain of kernel k ΓH(k), we
obtain [20]:

R(H) ≤ NλH

√
RγHΓH log(H)

1− γ
+

Rγσ2
maxH log(H)

1− γ2
,

(71)
where Rγ = smax

log(1+smax)
, with smax =

σ−2dxσ
2
max

1−γ and since
λH ∝ βH

1−γr
, we can derive the regret bound

R(H) ≤ O
(
NΓ

3/2
H log(H)

√
H
)
. (72)

VI. EXPERIMENTS

A. Distributed GP Consensus

We first evaluate the convergence behavior of our distributed
sparse-GP world model isolated from the reinforcement learn-
ing pipeline to gain insight into how the underlying commu-
nication topology affects consensus of the model.
a) Experimental Setup: We consider N = 5 agents and fix a
common set of M = 50 inducing inputs. Every agent i updates
its local natural-parameter pair (Σi

h, µ
i
h) from Ti = 500 new

(s, ai,∆s) samples, and then performs K rounds of gossip
on the doubly-stochastic weight matrix W . We measure the
consensus error of the first agent with the Frobenius norm

ϵK = max
i

∥∥Σh − Σ∗
h

∥∥
F

(73)

where Σ∗
h is the centralized posterior precision matrix com-

puted on the union of the data of all agents.
b) Communication Graphs: We test three connected, symmet-
ric graphs satisfying assumption 6 (see fig. 1):

• Cycle: each agent connects to two neighbors in a ring.
• Path: agents form a linear chain.
• Star: one central node connects to all others.

c) Consensus Error vs. Communication Rounds: Figure 3
plots ϵK against the number of gossip iterations K. As
expected, the star graph achieves zero error in a single step
(equivalent to a centralized model with a hub node). Both the
cycle and path graphs require multiple rounds to converge,
with the cycle consistently exhibiting faster error decay than
the path, owing to its smaller diameter and larger spectral gap.
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Fig. 2. Visualizations of the convergence of the predictive distribution of agent i = 1 for a path graph after {0, 5, 10, 50} gossip rounds.
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Fig. 3. Convergence Error Analysis for different graph structures.

d) Predictive Distribution Convergence: To illustrate how
consensus improves the predictive world model, fig. 2 shows
the posterior mean contribution for the first dimension of ∆s
for the path graph after K ∈ {0, 5, 10, 50} rounds. At K = 0
(no communication), each agent’s prediction is highly variable;
by K = 50 the curves coincide almost exactly with the
centralized predictor, demonstrating that parameter consensus
directly translates into correct predictions of the model.

B. Optimistic Reinforcement Learning

We evaluate OG-MARL on a cooperative reward-collection
task in which N agents jointly navigate to accumulate as
much reward as possible. At each timestep, an agent receives a
positive reward for occupying a goal location; the goals yield
rewards drawn from {0.1, 0.5, 1} and is optionally penalized
for large action magnitudes. Each agent observes the global
state s (the stacked positions of all agents), its action ai, and
its immediate reward. We compare:

1) SAC: model-free Soft Actor-Critic agents that learn in-
dependently without sharing data or model information.

2) MB-MARL: centralized model-based multi-agent RL
using a global world model, trained on all agents’ data.

3) OG-MARL: our optimistic gossiping multi-agent RL
approach using a decentralized world model.

We also perform an ablation study on the optimism scaling
factor. All methods use the hyper-parameters listed in table I
and have been evaluated on 5 random seeds.
a) Sample Efficiency: Figures 4 and 5 shows the cumulative
reward of all agents versus environment steps. Both model-
based approaches (Global MB-MARL and OG-MARL) dra-
matically outperform isolated SAC in sample efficiency: by
sharing data through their world models and performing multi-
ple synthetic roll-out updates per environment step, they reach
near-optimal policies with significantly fewer interactions.
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Fig. 4. Comparison of achieved cooperative reward for the goal collection
task without action penalties.

b) Cooperative Behavior and Shared Knowledge: In SAC, in-
dividual agents often fail to discover the highest-reward goals,
as each agent must explore the environment independently.
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Fig. 5. Comparison of achieved cooperative reward in the goal collection task
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This leads to a heterogeneous performance and suboptimal col-
lective reward (see SAC video2, and appendix C). By contrast,
both model-based methods consistently guide every agent to
the r = 1 goals and maintain position there for the remainder
of the episode. OG-MARL’s decentralized consensus allows
agents to rapidly share learned dynamics, resulting in optimal
goal allocation (see OG-MARL video3) and therefore lower
regret as visualized in fig. 6.
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Fig. 6. Comparison of simple regret among the different algorithms in the
goal collection task with action penalties.

c) Optimism: Encouraging Exploration: OG-MARL aug-
ments each agent’s reward with an intrinsic exploration bonus
proportional to the model uncertainty, implementing an upper-
confidence bound strategy. This intrinsic optimism drives
agents to explore rarely visited regions rather than greedily
exploiting known rewards. The standard Global MB-MARL
approach, which lacks such a bonus, occasionally converges
to suboptimal goal combinations that are not necessarily the
closest (see MB-MARL video4 and appendix C). In contrast,
OG-MARL reliably discovers and occupies the highest-value
goals nearest each agent. Figure 7 presents an ablation over

2Video SAC: https://t1p.de/9hbzv
3Video OG-MARL: https://t1p.de/cqal5
4Video MB-MARL: https://t1p.de/1h5pr

different optimism-scale values, demonstrating that an appro-
priately tuned optimism level is critical for balancing explo-
ration and exploitation in OG-MARL. Too little optimism does
not explore potentially better policies, while overly optimistic
levels explore too much and delay convergence.
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Fig. 7. Simple regret ablation for different optimism levels of OG-MARL.

VII. LIMITATIONS

OG-MARL and other GP-based algorithms naturally scale
with O(N3) due to matrix inversions in the Kernel matrix
computation. There exists work to reduce the computational
complexity [7]; however, scalability remains a challenge for
high-dimensional state space systems with many agents. Dif-
ferent approaches that use Bayesian neural networks or other
function approximations do not guarantee formal sampling
bounds. Further, OG-MARL is limited to the additive envi-
ronment structure from assumption 4, which is not necessarily
applicable to any multi-agent objectives and systems.

VIII. CONCLUSION

In this work, we introduce OG-MARL, an optimistic, dis-
tributed model-based MARL algorithm in which each agent
maintains its own sparse GP world model and fuses these
models via a consensus protocol to a global distributed world
model. We prove that under mild connectivity and additivity
assumptions, the consensus step recovers the same poste-
rior mean and uncertainty estimates as a centralized sparse
GP trained on all unified agent data. By leveraging these
shared models in an optimism-in-the-face-of-uncertainty plan-
ning scheme, OG-MARL guarantees sublinear simple regret
and provably converges to near-optimal cooperative policies,
despite never requiring any agent to observe or communicate
full joint actions. Our approach combines the data-efficiency
and exploration guarantees of model-based RL with the advan-
tages of decentralized learning. Empirically, we demonstrate
enhanced problem-solving capabilities in cooperative multi-
agent tasks, as each agent continually enriches its local model
by exchanging the experience with its neighboring agents.

https://t1p.de/9hbzv
https://t1p.de/cqal5
https://t1p.de/1h5pr
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APPENDIX

A. Practical Implementation
Our implementation of OG-MARL5 is based on the model-based
policy optimization algorithm MBPO [9], which uses a modified
version of soft actor-critic SAC [8] for policy optimization. In this
implementation, we fix the optimistic scale throughout learning and
treat it as a hyper-parameter, which is ablated in fig. 7.

B. Hyper-paramters
We use for the cooperative goal collection task the following hyper-
parameters for the different algorithms:

Parameters SAC OG-MARL MB-MARL
Training steps 10000 10000 10000
Number of agents 5 5 5
Buffer size 10000 10000 10000
Batch size 256 256 256
γ 0.99 0.99 0.99
τ (target updates) 0.005 0.005 0.005
Learning rates 3× 10−4 3× 10−4 3× 10−4

Model train freq. 250 250 250
Updates per env step 1 10 10
Roll-out length − 2 2
Optimism scale − 0.01 0.0
Consensus rounds − 100 −

TABLE I
HYPERPARAMETERS FOR THE COOPERATIVE REWARD COLLECTION TASK.

C. Visual Experiment Evaluation
We also visually analyze the impact of the optimism and cooperation
in the cooperative reward collection task. We compare no optimism
with optimism scale 0.01 of OG-MARL on the same random seed for
training. We observe that agent i = 2 does not discover the nearby
goal and moves from fig. 8 to fig. 9 to the centered highest goal
instead. In contrast, when using optimism scale 0.01, we observe
that agent i = 2 discovers its nearby goal from fig. 8 to fig. 10.
Comparing the performances of OG-MARL with the non-cooperating
SAC agents, we can see that only the agents that are very close to a
goal discover their nearby goal form fig. 8 to fig. 11 but do not share
the information of the other agents.

5GitHub: https://github.com/ManuelWendl/OG-MARL

https://github.com/ManuelWendl/OG-MARL


Fig. 8. Initial configuration of cooperative reward collection task.

Fig. 9. Final agent positions for OG-MARL without optimism (with action penalty).

Fig. 10. Final agent positions for OG-MARL with 0.01 optimism (with action penalty).

Fig. 11. Final positions of individual SAC agents (without action penalty).
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